RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2007 Volume 71, Issue 5, Pages 149–196 (Mi im720)

This article is cited in 58 papers

Bessel harmonic analysis and approximation of functions on the half-line

S. S. Platonov

Petrozavodsk State University

Abstract: We study problems of approximation of functions on $[0, +\infty)$ in the metric of $L_p$ with power weight using generalized Bessel shifts. We prove analogues of direct Jackson theorems for the modulus of smoothness of arbitrary order defined in terms of generalized Bessel shifts. We establish the equivalence of the modulus of smoothness and the $K$-functional. We define function spaces of Nikol'skii–Besov type and describe them in terms of best approximations. As a tool for approximation, we use a certain class of entire functions of exponential type. In this class, we prove analogues of Bernstein's inequality and others for the Bessel differential operator and its fractional powers. The main tool we use to solve these problems is Bessel harmonic analysis.

UDC: 517.518

MSC: 41A30

Received: 06.12.2005

DOI: 10.4213/im720


 English version:
Izvestiya: Mathematics, 2007, 71:5, 1001–1048

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026