RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 1996 Volume 60, Issue 2, Pages 21–48 (Mi im70)

This article is cited in 9 papers

Convolution equations containing singular probability distributions

N. B. Engibaryan


Abstract: The article is devoted to equations of the form
\begin{equation} \varphi(x)=g(x)-\int_0^\infty\varphi(t)\,dT(x-t), \tag{1} \end{equation}
where $T$ is a continuous function of bounded variation on $(-\infty;\infty)$ containing a singular component. First we study asymptotic and other properties of the solutions of formal Volterra equations (1) corresponding to $T(x)=0$ for $x\leqslant 0$. Next we introduce and study non-linear factorization equations (NFE) for (1). Factorization is constructed in the case when $T(-\infty)=0$, $T(x)\uparrow$ in $x$, and $T(+\infty)=\mu\leqslant 1$. With the aid of this factorization, we prove existence theorems for homogeneous $(g=0)$ and non-homogeneous equations in the singular case $\mu=1$.

UDC: 517.9

MSC: 45E10

Received: 30.01.1995

DOI: 10.4213/im70


 English version:
Izvestiya: Mathematics, 1996, 60:2, 251–279

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026