RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2012 Volume 76, Issue 3, Pages 139–156 (Mi im6847)

This article is cited in 15 papers

The Cauchy problem for a degenerate parabolic equation with inhomogeneous density and source in the class of slowly decaying initial data

A. V. Martynenkoa, An. F. Tedeevb, V. N. Shramenkoc

a Lugansk Taras Shevchenko National University
b Institute of Applied Mathematics and Mechanics, National Academy of Sciences of Ukraine
c National Technical University of Ukraine "Kiev Polytechnic Institute"

Abstract: Given a degenerate parabolic equation of the form $\rho(x) u_t=\operatorname{div}(u^{m-1}|Du|^{\lambda-1}Du)+\rho(x)u^p$ with a source and inhomogeneous density, we consider the Cauchy problem with an initial function slowly tending to zero as $|x| \to \infty$. We find conditions for the global-in-time existence or non-existence of solutions of this problem. These conditions depend essentially on the behaviour of the initial data as $|x|\to \infty$. In the case of global solubility we obtain a sharp estimate of the solution for large values of time.

Keywords: inhomogeneous density, degenerate parabolic equation, blow-up, slowly decaying initial function.

UDC: 517.946

MSC: 35K65, 35K15, 35B44

Received: 31.01.2011

DOI: 10.4213/im6847


 English version:
Izvestiya: Mathematics, 2012, 76:3, 563–580

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026