RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2012 Volume 76, Issue 4, Pages 65–124 (Mi im6792)

This article is cited in 10 papers

Homological dimensions and Van den Bergh isomorphisms for nuclear Fréchet algebras

A. Yu. Pirkovskii

National Research University "Higher School of Economics"

Abstract: We prove the equation $\operatorname{w{.}dg} A=\operatorname{w{.}db} A$ for every nuclear Fréchet–Arens–Michael algebra $A$ of finite weak bidimension, where $\operatorname{w{.}dg} A$ is the weak global dimension and $\operatorname{w{.}db} A$ the weak bidimension of $A$. Assuming that $A$ has a projective bimodule resolution of finite type, we establish the estimate $\operatorname{db}A\le\operatorname{dg}A+1$, where $\operatorname{dg} A$ is the global dimension and $\operatorname{db} A$ the bidimension of $A$. We also prove that $\operatorname{dg}A=\operatorname{db}A=\operatorname{w{.}dg}A= \operatorname{w{.}db} A=n$ for all nuclear Fréchet–Arens–Michael algebras satisfying the Van den Bergh conditions $\operatorname{VdB}(n)$. As an application, we calculate the homological dimensions of smooth and complex-analytic quantum tori.

Keywords: nuclear Fréchet algebra, global dimension, bidimension, Van den Bergh isomorphisms, Hochschild homology.

UDC: 517.986.2+512.664.2

MSC: 46M18, 46A04, 46H05, 18G20

Received: 19.01.2011
Revised: 20.04.2011

DOI: 10.4213/im6792


 English version:
Izvestiya: Mathematics, 2012, 76:4, 702–759

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026