RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2005 Volume 69, Issue 4, Pages 161–204 (Mi im652)

This article is cited in 33 papers

Asymptotic expansions of eigenvalues and eigenfunctions of an elliptic operator in a domain with many “light” concentrated masses situated on the boundary. Two-dimensional case

G. A. Chechkin

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: We consider vibrations of a membrane which contains many “light” concentrated masses on the boundary. We study the asymptotic behaviour of the frequencies of eigenvibrations of the membrane as the small parameter (which characterizes the diameter and density of the concentrated masses) tends to zero. We construct asymptotic expansions of eigenelements of the corresponding problems and carefully justify these expansions.

UDC: 517.956.226

MSC: 35J25, 35B25, 35B27, 35B40

Received: 02.06.2004

DOI: 10.4213/im652


 English version:
Izvestiya: Mathematics, 2005, 69:4, 805–846

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026