RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 1996 Volume 60, Issue 1, Pages 133–164 (Mi im65)

This article is cited in 9 papers

$G$-compactness of sequences of non-linear operators of Dirichlet problems with a variable domain of definition

A. A. Kovalevsky

Institute of Applied Mathematics and Mechanics, Ukraine National Academy of Sciences

Abstract: For a sequence of operators $A_s\colon\overset{\circ}{W}{}^{1,m}(\Omega_s)\to\bigl(\overset{\circ}{W}{}^{1,m}(\Omega_s)\bigr)^*$ in divergence form we prove a theorem concerning the choice of a subsequence that $G$-converges to the operator $\widehat A\colon\overset{\circ}{W}{}^{1,m}(\Omega)\to\bigl(\overset{\circ}{W}{}^{1,m}(\Omega)\bigr)^*$ with the same leading coefficients as the operator $A_s$ and some additional lower coefficient $b(x,u)$. We give a procedure for constructing the function $b(x,u)$. We discuss the question of whether the principal condition under which the choice theorem is established is necessary. We prove criteria for this condition to hold.

MSC: Primary 35J65, 49L10, 49L15; Secondary 47H15, 47H17, 35B99, 35D99

Received: 28.10.1994

DOI: 10.4213/im65


 English version:
Izvestiya: Mathematics, 1996, 60:1, 137–168

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026