RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2005 Volume 69, Issue 3, Pages 55–80 (Mi im640)

This article is cited in 73 papers

The equation of the $p$-adic open string for the scalar tachyon field

V. S. Vladimirov

Steklov Mathematical Institute, Russian Academy of Sciences

Abstract: We study the structure of solutions of the one-dimensional non-linear pseudodifferential equation describing the dynamics of the $p$-adic open string for the scalar tachyon field $p^{\frac12\partial^2_t}\Phi=\Phi^p$. We explain the role of real zeros of the entire function $\Phi^p(z)$ and the behaviour of solutions $\Phi(t)$ in the neighbourhood of these zeros. We point out that discontinuous solutions can appear if $p$ is even. We use the method of expanding the solution $\Phi$ and the function $\Phi^p$ in Hermite polynomials and modified Hermite polynomials and establish a connection between the coefficients of these expansions (integral conservation laws). For $p=2$ we construct an infinite system of non-linear equations in the unknown Hermite coefficients and study its structure. We consider the 3-approximation. We indicate a connection between the problems stated and a non-linear boundary-value problem for the heat equation.

UDC: 517.958+530.1

MSC: 46S10, 81-02

Received: 13.01.2005

DOI: 10.4213/im640


 English version:
Izvestiya: Mathematics, 2005, 69:3, 487–512

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026