RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2005 Volume 69, Issue 2, Pages 205–220 (Mi im638)

This article is cited in 6 papers

On sums of multiplicative functions over numbers all of whose prime divisors belong to given arithmetic progressions

M. E. Changa

Steklov Mathematical Institute, Russian Academy of Sciences

Abstract: The method of complex integration is used to derive asymptotic formulae for sums of multiplicative functions over numbers all of whose prime divisors belong to given arithmetic progressions. Generally, the principal term in such a formula takes the form of a sum with an increasing number of terms. However, under certain condition on the parameters of the problem, it becomes a finite sum.

UDC: 511

MSC: 11M26, 11M35, 11M41, 11N05, 11N85, 11M05

Received: 21.09.2004

DOI: 10.4213/im638


 English version:
Izvestiya: Mathematics, 2005, 69:2, 423–438

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026