RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2005 Volume 69, Issue 1, Pages 195–224 (Mi im631)

This article is cited in 11 papers

The Cayley–Laplace differential operator on the space of rectangular matrices

S. P. Khekalo

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences

Abstract: This paper deals with the homogeneous Cayley–Laplace differential operator on the space of rectangular real matrices. Using Riesz potentials, we obtain fundamental solutions for this operator and some of its powers. We establish that the Cayley–Laplace operator satisfies the strong Huygens principle. Using intertwining operators with spectral parameters, we consider deformations of the Cayley–Laplace operator and find sufficient conditions under which these deformations satisfy the strong Huygens principle.

MSC: 35A08, 35C05, 35Q53, 37K20, 14H70, 35L15

Received: 25.05.2004

DOI: 10.4213/im631


 English version:
Izvestiya: Mathematics, 2005, 69:1, 191–219

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026