RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 1996 Volume 60, Issue 1, Pages 87–114 (Mi im63)

This article is cited in 8 papers

On a measure of irrationality for values of $G$-functions

W. V. Zudilin

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: It is shown that values of $G$-functions satisfying a system of linear differential equations are irrational at rational points $a/b$ with $a\in\mathbb Z$ and $b\in\mathbb N$ such that $b>C(\varepsilon)|a|^{2+\varepsilon}$ for an arbitrary positive $\varepsilon$. In the case of a generalized polylogarithmic function
$$ f(z)=\sum_{\nu=1}^\infty\frac{z^\nu}{(\nu+\lambda)^m}, \quad m\geqslant 2, \enskip \lambda\in\mathbb Q\setminus\{-1,-2,\dots\}, $$
an explicit form of $C(\varepsilon)$ is found.

UDC: 511.36

MSC: 11J82

Received: 07.07.1995

DOI: 10.4213/im63


 English version:
Izvestiya: Mathematics, 1996, 60:1, 91–118

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026