RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2005 Volume 69, Issue 1, Pages 125–132 (Mi im626)

This article is cited in 7 papers

On the fundamental groups of the complements of Hurwitz curves

O. V. Kulikova

M. V. Lomonosov Moscow State University

Abstract: It is proved that the commutator subgroup of the fundamental group of the complement of any plane affine irreducible Hurwitz curve (or any plane affine irreducible pseudoholomorphic curve) is finitely presented. It is shown that there is a Hurwitz curve (resp. pseudoholomorphic curve) in $\mathbb{CP}^2$ such that the fundamental group of its complement is non-Hopfian and, therefore, this group is not residually finite. We also prove the existence of an irreducible non-singular algebraic curve $C\subset\mathbb C^2$ and a bidisc $D\subset\mathbb C^2$ such that the fundamental group $\pi_1(D\setminus C)$ is non-Hopfian.

UDC: 514.756.44+512.543.16

MSC: 14F35, 20F34, 57M05

Received: 31.08.2004

DOI: 10.4213/im626


 English version:
Izvestiya: Mathematics, 2005, 69:1, 123–130

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026