RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2012 Volume 76, Issue 5, Pages 3–28 (Mi im5883)

This article is cited in 9 papers

Isovariant extensors and the characterization of equivariant homotopy equivalences

S. M. Ageev

Belarusian State University, Minsk

Abstract: We extend the well-known theorem of James–Segal to the case of an arbitrary family $\mathcal{F}$ of conjugacy classes of closed subgroups of a compact Lie group $G$: a $G$-map $f\colon\mathbb{X}\to\mathbb{Y}$ of metric $\operatorname{Equiv}_{\mathcal{F}}$-$\mathrm{ANE}$-spaces is a $G$-homotopy equivalence if and only if it is a weak $G$-$\mathcal{F}$-homotopy equivalence. The proof is based on the theory of isovariant extensors, which is developed in this paper and enables us to endow $\mathcal{F}$-classifying $G$-spaces with an additional structure.

Keywords: classifying $G$-spaces, isovariant absolute extensor, weak equivariant homotopy equivalence.

UDC: 515.124.62+515.122.4

MSC: 54H15, 54E40, 57S10

Received: 15.11.2010
Revised: 14.11.2011

DOI: 10.4213/im5883


 English version:
Izvestiya: Mathematics, 2012, 76:5, 857–880

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026