RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 1995 Volume 59, Issue 6, Pages 181–206 (Mi im58)

This article is cited in 4 papers

The Hardy–Littlewood problem for numbers with a fixed number of prime divisors

N. M. Timofeev

Vladimir State Pedagogical University

Abstract: In this paper we investigate the number of representations of a natural number $N$ as the sum of a number with $k$ prime divisors and two squares, where $k$ may depend on $N$. We determine the asymptotic behaviour when $2\leqslant k\leqslant(2-\varepsilon)\ln\ln N$ and $(2+\varepsilon)\ln\ln N\leqslant k\leqslant b\ln\ln N$.

MSC: 11P55, 11D85, 11P32, 11N25

Received: 05.12.1994


 English version:
Izvestiya: Mathematics, 1995, 59:6, 1283–1309

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026