RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2006 Volume 70, Issue 2, Pages 69–98 (Mi im558)

This article is cited in 21 papers

Bilinear and trigonometric approximations of periodic functions of several variables of Besov classes $B_{p, \theta}^r$

A. S. Romanyuk

Institute of Mathematics, Ukrainian National Academy of Sciences

Abstract: We obtain order-sharp estimates for bilinear approximations of periodic functions of $2d$ variables of the form $f(x,y)=f(x-y)$, $x, y\in \pi_d = \prod_{j=1}^d[-\pi, \pi]$, obtained from functions $f(x)\in B_{p, \theta}^r$, $1\le p<\infty$, by translating the argument $x\in \pi_d$ by vectors $y\in \pi_d$. We also study the deviations of step hyperbolic Fourier sums on the classes $B_{1, \theta}^r$ and the best orthogonal trigonometric approximations in $L_q$, $ 1<q<\infty$, of functions belonging to these classes.

UDC: 517.5

MSC: 42B99, 41A46, 41A50

Received: 08.05.2003

DOI: 10.4213/im558


 English version:
Izvestiya: Mathematics, 2006, 70:2, 277–306

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026