RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2008 Volume 72, Issue 1, Pages 67–98 (Mi im534)

This article is cited in 5 papers

Immersed polygons and their diagonal triangulations

A. O. Ivanov, A. A. Tuzhilin

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: We introduce the notion of an ‘immersed polygon’, which naturally extends the notion of an ordinary planar polygon bounded by a closed (embedded) polygonal arc to the case when this arc may have self-intersections. We prove that every immersed polygon admits a diagonal triangulation and the closure of every embedded monotone polygonal arc bounds an immersed polygon. Given any non-degenerate planar linear tree, we construct an immersed polygon containing it.

UDC: 514.77+512.816.4+517.924.8

MSC: 05C05, 51M16, 53C42

Received: 28.02.2005

DOI: 10.4213/im534


 English version:
Izvestiya: Mathematics, 2008, 72:1, 63–90

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026