RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2013 Volume 77, Issue 6, Pages 97–138 (Mi im5184)

This article is cited in 1 paper

A Littlewood–Paley type theorem and a corollary

S. N. Kudryavtsev

Dorodnitsyn Computing Centre of the Russian Academy of Sciences

Abstract: We prove an analogue of the Littlewood–Paley theorem for orthoprojectors onto mutually orthogonal subspaces of piecewise-polynomial functions on the cube $I^d$. This yields upper bounds for the norms of functions in $L_p(I^d)$ in terms of the corresponding norms of the projections to subspaces of piecewise-polynomial functions of several variables. We use these results to obtain upper bounds for the Kolmogorov widths of Besov classes of (non-periodic) functions satisfying mixed Hölder conditions.

Keywords: orthoprojector, mutually orthogonal subspaces, piecewise-polynomial functions, Littlewood–Paley theorem, width.

UDC: 517.5

MSC: 41A15, 41A46, 41A63

Received: 08.09.2010
Revised: 29.11.2011

DOI: 10.4213/im5184


 English version:
Izvestiya: Mathematics, 2013, 77:6, 1155–1194

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026