RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2004 Volume 68, Issue 4, Pages 3–18 (Mi im494)

This article is cited in 14 papers

On a fourth-order problem with spectral and physical parameters in the boundary condition

J. Ben Amaraa, A. A. Vladimirovb

a University of 7-th November at Carthage
b M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: We consider the following fourth-order boundary-value problem:
\begin{gather*} [(py'')'-qy']'=\lambda ry, \\ y(0)=y'(0)=y''(1)=[(py'')'-qy'](1)+\lambda my(1)=0 \end{gather*}
with spectral parameter $\lambda\in\mathbb C$ and physical parameter $m\in\mathbb R$. We assign to this problem a linear pencil of bounded operators $T_m=T_m(\lambda)$ depending on the physical parameter $m$ and acting from $\mathcal H_2=\{y\mid y\in W_2^2[0,1],\ y(0)=y'(0)=0\}$ to the dual space $\mathcal H_{-2}$. We study the spectral properties of $T_m$ and use the results of this study to describe properties of the eigenvalues of the problem for various values of $m$. In particular, we establish asymptotics of these eigenvalues as $m\nearrow0$.

UDC: 517.984

MSC: 34B24, 34L20, 34B10, 34L99, 34G10

Received: 28.10.2003

DOI: 10.4213/im494


 English version:
Izvestiya: Mathematics, 2004, 68:4, 645–658

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026