RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2004 Volume 68, Issue 3, Pages 5–14 (Mi im483)

This article is cited in 4 papers

On the number of rational points on certain elliptic curves

E. Bombieria, U. Zannierb

a Institute for Advanced Study, School of Mathematics
b University Iuav of Venice

Abstract: Let $E$ be an elliptic curve defined over the rationals, with rational 2-torsion. We prove a uniform bound for the number of rational points on $E$ of height $\leqslant B$ of the form $\#\{P\in E({\mathbb Q})\colon H(P)\leqslant B\}\leqslant c(\varepsilon)(\max(H(E),B))^\varepsilon$, valid for every fixed $\varepsilon>0$ and a suitable positive computable constant $c(\varepsilon)$. We give an application of this result to the counting of quadruples $(p_1,p_2,p_3,p_4)$ of distinct primes that do not exceed $X$ and satisfy $p_i^2\Delta_{jk}-p_j^2\Delta_{ik}+p_k^2\Delta_{ij}=0$ for all $1\leqslant i<j<k\leqslant 4$, where $\Delta_{ij}$ are given integers. This is applied by Konyagin (in the paper [3], which is published simultaneously with the present one) to a problem on the large sieve by squares.

UDC: 512.752

MSC: 11G05, 14G40, 14H52, 14N10

Received: 15.08.2003

DOI: 10.4213/im483


 English version:
Izvestiya: Mathematics, 2004, 68:3, 437–445

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026