RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2003 Volume 67, Issue 6, Pages 71–110 (Mi im460)

This article is cited in 7 papers

Non-local elliptic problems with non-linear argument transformations near the points of conjugation

P. L. Gurevich


Abstract: We consider elliptic equations of order $2m$ in a domain $G\subset\mathbb R^n$ with non-local conditions that connect the values of the unknown function and its derivatives on $(n-1)$-dimensional submanifolds $\overline\Upsilon_i$ (where $\bigcup_i\overline\Upsilon_i=\partial G$ with the values on $\omega_{is}(\overline\Upsilon_i)\subset\overline G$. Non-local elliptic problems in dihedral angles arise as model problems near the conjugation points $g\in\overline\Upsilon_i\cap \overline\Upsilon_j\ne\varnothing$, $i\ne j$. We study the case when the transformations $\omega_{is}$ correspond to non-linear transformations in the model problems. It is proved that the operator of the problem remains Fredholm and its index does not change as we pass from linear argument transformations to non-linear ones.

UDC: 517.9

MSC: 35J40, 46E35, 47F05, 47A53

Received: 15.03.2002

DOI: 10.4213/im460


 English version:
Izvestiya: Mathematics, 2003, 67:6, 1149–1186

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026