RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2011 Volume 75, Issue 4, Pages 3–20 (Mi im4458)

This article is cited in 11 papers

On conditions for invertibility of difference and differential operators in weight spaces

M. S. Bichegkuev

North-Ossetia State University

Abstract: We obtain necessary and sufficient conditions for the invertibility of the difference operator $\mathcal{D}_E\colon D(\mathcal{D}_E)\subset l^p_\alpha \to l^p_\alpha$, $(\mathcal{D}_E x)(n)=x(n+1)-Bx(n)$, $n\in \mathbb{Z}_+$, whose domain $D(\mathcal{D}_E)$ is given by the condition $x(0)\in E$, where $l^p_\alpha=l^p_\alpha(\mathbb{Z}_+,X)$, $p\in[1,\infty]$, is the Banach space of sequences (of vectors in a Banach space $X$) summable with weight $\alpha\colon\mathbb{Z}_+\to (0,\infty)$ for $p\in[1,\infty)$ and bounded with respect to $\alpha$ for $p=\infty$, $B\colon X\to X $ is a bounded linear operator, and $E$ is a closed $B$-invariant subspace of $X$. We give applications to the invertibility of differential operators with an unbounded operator coefficient (the generator of a strongly continuous operator semigroup) in weight spaces of functions.

Keywords: difference operator, spectrum of an operator, invertible operator, weight spaces of sequences and functions, linear relation, differential operator.

UDC: 517.9

MSC: 47B37, 47B39

Received: 11.02.2010
Revised: 18.11.2010

DOI: 10.4213/im4458


 English version:
Izvestiya: Mathematics, 2011, 75:4, 665–680

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026