RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2003 Volume 67, Issue 3, Pages 23–44 (Mi im434)

This article is cited in 19 papers

c-fans and Newton polyhedra of algebraic varieties

B. Ya. Kazarnovskii

Scientific Technical Centre "Informregistr"

Abstract: To every algebraic subvariety of a complex torus there corresponds a Euclidean geometric object called a c-fan. This correspondence determines an intersection theory for algebraic varieties. c-fans form a graded commutative algebra with visually defined operations. The c-fans of algebraic varieties lie in the subring of rational c-fans. It seems that other subrings may be used to construct an intersection theory for other categories of analytic varieties. We discover a relation between an old problem in the theory of convex bodies (the so-called Minkowski problem) and the ring of c-fans. This enables us to define a correspondence that sends any algebraic curve to a convex polyhedron in the space of characters of the torus.

UDC: 512.7+514.172

MSC: 52B20, 14M25, 14C17

Received: 15.06.2001

DOI: 10.4213/im434


 English version:
Izvestiya: Mathematics, 2003, 67:3, 439–460

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026