RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2003 Volume 67, Issue 2, Pages 167–180 (Mi im430)

This article is cited in 2 papers

Delzant models of moduli spaces

A. N. Tyurin

Steklov Mathematical Institute, Russian Academy of Sciences

Abstract: For every genus $g$ we construct a smooth, complete, rational polarized algebraic variety $(DM_g,H)$ together with an effective normal crossing divisor $D=\cup D_i$ such that for every moduli space $M_\Sigma(2,0)$ of semistable topologically trivial vector bundles of rank 2 on an algebraic curve $\Sigma$ of genus $g$ there is a holomorphic isomorphism $f\colon M_\Sigma(2,0)\setminus K_g\to DM_g \setminus D$, where $K_g$ is the Kummer variety of the Jacobian of $\Sigma$, sending the polarization of $DM_g$ to the theta divisor of the moduli space. This isomorphism induces isomorphisms of the spaces $H^0(M_\Sigma(2,0),\Theta^k)$ and $H^0(DM_g,H^k)$.

UDC: 512.723

MSC: 14H60, 53D20

Received: 10.09.2001

DOI: 10.4213/im430


 English version:
Izvestiya: Mathematics, 2003, 67:2, 365–376

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026