RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2011 Volume 75, Issue 2, Pages 195–224 (Mi im4203)

This article is cited in 8 papers

Bases of exponentials, sines and cosines in weighted spaces on a finite interval

S. S. Pukhov

M. V. Lomonosov Moscow State University

Abstract: We obtain a result concerning the basis property in a weighted space on an interval $(-a,a)$ for a system of exponentials generated by the zeros of the Fourier transform of a function with singularities at the ends of the support interval $(-a,a)$. For an arbitrary $\Delta\in\mathbb{C}$ we find a criterion for the basis property of the system $(e^{i(n+\Delta\operatorname{sign} n)t})_{n\in\mathbb{Z}}$ in a weighted space on the interval $(-\pi,\pi)$ and the systems of sines $(\sin((n+\Delta)t))_{n\in\mathbb{N}}$ and cosines $1\cup (\cos((n+\Delta)t))_{n\in\mathbb{N}}$ in a weighted space on the interval $(0,\pi)$. The weight is everywhere a finite product of polynomial functions.

Keywords: bases of exponentials, weighted spaces.

UDC: 517.982.254

MSC: Primary 30B50; Secondary 42A05, 42A10, 42A63, 42C30

Received: 21.08.2009

DOI: 10.4213/im4203


 English version:
Izvestiya: Mathematics, 2011, 75:2, 413–443

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026