RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2003 Volume 67, Issue 1, Pages 99–130 (Mi im420)

This article is cited in 19 papers

Stability of the operator of $\varepsilon$-projection to the set of splines in $C[0,1]$

E. D. Livshits


Abstract: We study the problem of the existence of a continuous selection for the metric projection to the set of $n$-link piecewise-linear functions in the space $C[0,1]$. We show that there is a continuous selection if and only if $n=1$ or $n=2$. We establish that there is a continuous $\varepsilon$-selection to $L$ ($L\subset C[0,1]$) if $L$ belongs to a certain class of sets that contains, in particular, the set of algebraic rational fractions and the set of piecewise-linear functions. We construct an example showing that sometimes there is no $\varepsilon$-selection for a set of splines of degree $d>1$.

UDC: 517.518.8

MSC: 41A65, 41A50, 46B20, 65J15

Received: 12.04.2001
Revised: 28.08.2002

DOI: 10.4213/im420


 English version:
Izvestiya: Mathematics, 2003, 67:1, 91–119

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026