RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2003 Volume 67, Issue 1, Pages 83–98 (Mi im419)

This article is cited in 21 papers

The universality of $L$-functions associated with new forms

A. P. Laurincikas, K. Matsumoto, J. Steuding


Abstract: We prove the universality theorem for $L$-functions of new parabolic forms. It concerns the uniform approximation of analytic functions by shifts of these $L$-functions. This theorem together with the Shimura–Taniyama conjecture (now proved) yields the universality of $L$-functions of non-singular elliptic curves over the field of rational numbers. The universality of $L$-functions implies that they are functionally independent.

UDC: 511

MSC: 11F66, 11M41, 11K99

Received: 28.02.2002

DOI: 10.4213/im419


 English version:
Izvestiya: Mathematics, 2003, 67:1, 77–90

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026