RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2011 Volume 75, Issue 1, Pages 3–28 (Mi im4104)

This article is cited in 22 papers

On the least possible type of entire functions of order $\rho\in(0,1)$ with positive zeros

G. G. Braichev, V. B. Sherstyukov

National Engineering Physics Institute "MEPhI"

Abstract: We find the greatest lower bound for the type of an entire function of order $\rho\in(0,1)$ whose sequence of zeros lies on one ray and has prescribed lower and upper $\rho$-densities. We make a thorough study of the dependence of this extremal quantity on $\rho$ and on properties of the distribution of zeros. The results are applied to an extremal problem on the radii of completeness of systems of exponentials.

Keywords: extremal problems, type of entire function, upper and lower densities of zeros, completeness of systems of exponentials.

UDC: 517.547.22

MSC: 30D20, 30C15, 30D15, 46B15

Received: 06.04.2009
Revised: 31.08.2009

DOI: 10.4213/im4104


 English version:
Izvestiya: Mathematics, 2011, 75:1, 1–27

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026