RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2011 Volume 75, Issue 2, Pages 69–126 (Mi im4098)

This article is cited in 5 papers

Functional models of non-selfadjoint operators, strongly continuous semigroups, and matrix Muckenhoupt weights

G. M. Gubreeva, Yu. D. Latushkinb

a Poltava National Technical University named after Yuri Kondratyuk
b University of Missouri-Columbia

Abstract: We consider unbounded continuously invertible operators $A$, $A_0$ on a Hilbert space $\mathfrak{H}$ such that the operator $A^{-1}-A^{-1}_0$ has finite rank. Assuming that $\sigma(A_0)=\varnothing$ and the semigroup $V_+(t):=\exp\{iA_0t\}$, $t\geqslant0$, is of class $C_0$, we state criteria under which the semigroups $U_\pm(t):=\exp\{\pm iAt\}$, $t\geqslant0$, are also of class $C_0$. We give applications to the theory of mean-periodic functions. The investigation is based on functional models of non-selfadjoint operators and on the technique of matrix Muckenhoupt weights.

Keywords: $C_0$-semigroups, functional models of non-selfadjoint operators, matrix Muckenhoupt weights, Hilbert spaces of entire functions.

UDC: 517.98+517.518

MSC: 47A45, 47A55, 47D06, 47B32, 46E22

Received: 16.03.2009

DOI: 10.4213/im4098


 English version:
Izvestiya: Mathematics, 2011, 75:2, 287–346

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026