RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2011 Volume 75, Issue 2, Pages 35–68 (Mi im4067)

This article is cited in 9 papers

Sums of powers of subsets of an arbitrary finite field

A. A. Glibichuk

M. V. Lomonosov Moscow State University

Abstract: We discuss the following problem: given an integer $n\geqslant 2$, a real number $\varepsilon\in (0,1)$, and an arbitrary subset $A\subseteq\mathbb{F}_q$ which is not contained in a multiplicative shift of a proper subfield of $\mathbb{F}_q$ and satisfies $|A|>q^{\frac{1}{n-\varepsilon}}$, where $\mathbb{F}_q$ is the finite field of $q=p^r$ elements, describe those positive integers $N$ and $m$ for which we have a set-theoretic equality $NA^m=\mathbb{F}_q$. In particular, we show that this equality holds for $m=2n-2$ and $N=N(n,r,\varepsilon)$.

Keywords: sum-products of sets, finite field.

UDC: 511.235.1

MSC: 12E20, 11P05, 11B13

Received: 18.12.2008
Revised: 31.10.2009

DOI: 10.4213/im4067


 English version:
Izvestiya: Mathematics, 2011, 75:2, 253–285

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026