RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2002 Volume 66, Issue 4, Pages 177–204 (Mi im399)

This article is cited in 27 papers

On the limit behaviour of the spectrum of a model problem for the Orr–Sommerfeld equation with Poiseuille profile

S. N. Tumanov, A. A. Shkalikov


Abstract: This paper deals with a problem on the limiting behaviour of the spectra of the operators $L(\varepsilon)=i\varepsilon y^{\prime\prime}+x^2y$ with Dirichlet boundary conditions on a finite interval as the positive parameter $\varepsilon$ tends to zero. It is proved that the spectrum is concentrated along three curves in the complex plane. These curves connect a knot-point $\lambda_0$, which lies in the numerical range of the operator, with the points 0, 1 and $-i\infty$. We find uniform (with respect to $\varepsilon$) quasiclassical formulae for the distribution of the eigenvalues along these curves.

UDC: 517.927+517.928

MSC: 34L20, 34B24, 76E15

Received: 04.07.2001

DOI: 10.4213/im399


 English version:
Izvestiya: Mathematics, 2002, 66:4, 829–856

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026