RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2002 Volume 66, Issue 3, Pages 49–102 (Mi im387)

This article is cited in 37 papers

Irrationality of values of the Riemann zeta function

W. V. Zudilin

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: The paper deals with a generalization of Rivoal's construction, which enables one to construct linear approximating forms in 1 and the values of the zeta function $\zeta(s)$ only at odd points. We prove theorems on the irrationality of the number $\zeta(s)$ for some odd integers $s$ in a given segment of the set of positive integers. Using certain refined arithmetical estimates, we strengthen Rivoal's original results on the linear independence of the $\zeta(s)$.

UDC: 511.3

MSC: 11J81, 11M06

Received: 24.04.2001

DOI: 10.4213/im387


 English version:
Izvestiya: Mathematics, 2002, 66:3, 489–542

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026