RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2002 Volume 66, Issue 2, Pages 205–224 (Mi im384)

This article is cited in 1 paper

Lattice gauge theories and the Florentino conjecture

A. N. Tyurin

Steklov Mathematical Institute, Russian Academy of Sciences

Abstract: We investigate the relations between the space of classes of $\operatorname{SU}(2)$-representations of the fundamental group of a Riemann surface $\Sigma_\Gamma$ equipped with a trinion decomposition corresponding to a 3-valent graph $\Gamma$ and the $\operatorname{SU}(2)$ theory on $\Gamma$. We construct a section of the standard map of the orbit space of the gauge theory on $\Sigma_\Gamma$ onto that of the gauge theory on $\Gamma$. As an application, we prove a conjecture of Florentino.

UDC: 512.7

MSC: 81T13

Received: 20.02.2001

DOI: 10.4213/im384


 English version:
Izvestiya: Mathematics, 2002, 66:2, 425–442

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026