RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2002 Volume 66, Issue 1, Pages 167–202 (Mi im376)

This article is cited in 5 papers

Invariant subspaces in some function spaces on symmetric spaces. III

S. S. Platonov

Petrozavodsk State University

Abstract: We describe the structure of closed linear subspaces in some topological vector spaces that consist of functions on the exceptional non-compact symmetric space $M=F_4/{\operatorname{Spin}(9)}$ (the Cayley space) and are invariant under the natural quasi-regular representation of the group $F_4$. The class of function spaces under consideration contains the spaces $C^d(M)$ of $d$-times continuously differentiable functions ($d=0,1,\dots,\infty$) and the spaces of functions of exponential growth on $M$.

UDC: 517.954

MSC: 43A85, 22E46

Received: 04.12.2000

DOI: 10.4213/im376


 English version:
Izvestiya: Mathematics, 2002, 66:1, 165–200

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026