RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2000 Volume 64, Issue 6, Pages 107–124 (Mi im313)

This article is cited in 22 papers

The absence of global positive solutions of systems of semilinear elliptic inequalities in cones

G. G. Laptev


Abstract: Let $K$ be a cone in $\mathbb R^N$, $N\geqslant 2$. We establish conditions for the absence of global non-trivial non-negative solutions of semilinear elliptic inequalities and systems of inequalities of the form
$$ -\operatorname{div}(|x|^\alpha Du)\geqslant |x|^\beta u^q, \qquad u\big|_{\partial K}=0. $$
We find the critical exponent $q^*$ that divides the domains of existence of these solutions from those of their absence. We prove that in the limiting case $q=q^*$ there are no solutions. The method is to multiply the system by a special factor and integrate the inequalities thus obtained.

MSC: 35J60, 35G20, 35B99, 35J65, 35B50

Received: 18.05.1999

DOI: 10.4213/im313


 English version:
Izvestiya: Mathematics, 2000, 64:6, 1197–1215

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026