RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2000 Volume 64, Issue 2, Pages 89–120 (Mi im285)

This article is cited in 38 papers

Braid monodromy factorizations and diffeomorphism types

Vik. S. Kulikova, M. Teicherb

a Steklov Mathematical Institute, Russian Academy of Sciences
b Bar-Ilan University, Department of Chemistry

Abstract: In this paper we prove that if two cuspidal plane curves $B_1$ and $B_2$ have equivalent braid monodromy factorizations, then $B_1$ and $B_2$ are smoothly isotopic in $\mathbb C\mathbb P^2$. As a consequence, we obtain that if $S_1$, $S_2$ are surfaces of general type embedded in a projective space by means of a multiple canonical class and if the discriminant curves (the branch curves) $B_1$$B_2$ of some smooth projections of $S_1$$S_2$ to $\mathbb{CP}^2$ have equivalent braid monodromy factorizations, then $S_1$ and $S_2$ are diffeomorphic (as real four-dimensional manifolds).

MSC: 14E20

Received: 29.12.1998

DOI: 10.4213/im285


 English version:
Izvestiya: Mathematics, 2000, 64:2, 311–341

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026