RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2009 Volume 73, Issue 6, Pages 125–144 (Mi im2742)

This article is cited in 23 papers

Lower bounds for the rate of convergence of greedy algorithms

E. D. Livshits

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: We obtain a lower bound for the rate of convergence of a pure greedy algorithm in the spaces $\mathcal A_0(\mathcal D)$ and $\mathcal A_1(\mathcal D)$, and this bound turns out to be very close to the best known upper bound. We also obtain a precise lower bound for the rate of convergence of the orthogonal greedy algorithm in the space $\mathcal A_0(\mathcal D)$.

Keywords: pure greedy algorithm, best $n$-term approximation, interpolation classes, rate of convergence.

UDC: 517.518.8+519.651.3

MSC: Primary 41A25; Secondary 41A65, 65D15

Received: 02.11.2007

DOI: 10.4213/im2742


 English version:
Izvestiya: Mathematics, 2009, 73:6, 1197–1215

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026