RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2009 Volume 73, Issue 1, Pages 121–156 (Mi im2723)

This article is cited in 3 papers

Automorphisms of Galois coverings of generic $m$-canonical projections

Vik. S. Kulikova, V. M. Kharlamovb

a Steklov Mathematical Institute, Russian Academy of Sciences
b University Louis Pasteur

Abstract: We investigate the automorphism groups of Galois coverings induced by pluricanonical generic coverings of projective spaces. In dimensions one and two, it is shown that such coverings yield sequences of examples where specific actions of the symmetric group $S_d$ on curves and surfaces cannot be deformed together with the action of $S_d$ into manifolds whose automorphism group does not coincide with $S_d$. As an application, we give new examples of complex and real $G$-varieties which are diffeomorphic but not deformation equivalent.

Keywords: generic coverings of projective lines and planes, Galois group of a covering, Galois extensions, automorphism group of a projective variety.

UDC: 512.7

MSC: 14E20, 14F35, 14J15, 14J29, 14P25, 32G05, 57R17, 57R50

Received: 04.09.2007

DOI: 10.4213/im2723


 English version:
Izvestiya: Mathematics, 2009, 73:1, 121–150

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026