RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2009 Volume 73, Issue 5, Pages 67–82 (Mi im2713)

This article is cited in 4 papers

On the factorization of integral operators on spaces of summable functions

N. B. Engibaryan

Institute of Mathematics, National Academy of Sciences of Armenia

Abstract: We consider the factorization $I-K=(I-U^+)(I-U^-)$, where $I$ is the identity operator, $K$ is an integral operator acting on some Banach space of functions summable with respect to a measure $\mu$ on $(a,b)\subset(-\infty,+\infty)$ continuous relative to the Lebesgue measure,
\begin{equation*} (Kf)(x)=\int^b_ak(x,t)f(t)\mu(dt),\qquad x\in(a,b), \end{equation*}
and $U^\pm$ are the desired Volterra operators. A necessary and sufficient condition is found for the existence of this factorization for a rather wide class of operators $K$ with positive kernels and for Hilbert–Schmidt operators.

Keywords: functions summable with respect to a measure, integral operators, Volterra factorization.

UDC: 517.9

MSC: 45B05, 45D05, 45E05, 45E10, 45G10, 45P05, 47A68, 47B35, 47G10, 60J10

Received: 02.08.2007

DOI: 10.4213/im2713


 English version:
Izvestiya: Mathematics, 2009, 73:5, 921–937

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026