RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2009 Volume 73, Issue 1, Pages 177–186 (Mi im2710)

This article is cited in 3 papers

Affine synthesis in the space $L^2(\mathbb R^d)$

P. A. Terekhin

Saratov State University named after N. G. Chernyshevsky

Abstract: We establish some theorems on the representation of functions $f\in L^2(\mathbb R^d)$ by series of the form $f=\sum_{j\in\mathbb N}\sum_{k\in\mathbb Z^d}c_{j,k}\psi_{j,k}$ that are absolutely convergent with respect to the index $j$ (that is, $\sum_{j\in\mathbb N}\bigl\|\sum_{k\in\mathbb Z^d}c_{j,k}\psi_{j,k}\bigr\|_2<\infty$), where $\psi_{j,k}(x)=|{\det a_j}|^{1/2}\psi(a_jx-bk)$, $j\in\mathbb N$, $k\in\mathbb Z^d$, is an affine system of functions. We prove the validity of the Bui–Laugesen conjecture on the sufficiency of the Daubechies conditions for a positive solution of the affine synthesis problem in the space $L^2(\mathbb R^d)$. A constructive solution is given for this problem under a localization of the Daubechies conditions.

Keywords: representation of functions by series, affine system, affine synthesis.

UDC: 517.51

MSC: 41A15, 41A65, 94A20, 42C15, 42C30, 42C40, 46B15, 46C05, 46E35

Received: 25.07.2007

DOI: 10.4213/im2710


 English version:
Izvestiya: Mathematics, 2009, 73:1, 171–180

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026