RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2008 Volume 72, Issue 5, Pages 141–148 (Mi im2675)

This article is cited in 32 papers

ACL and differentiability of a generalization of quasi-conformal maps

R. R. Salimov

Institute of Applied Mathematics and Mechanics, Ukraine National Academy of Sciences

Abstract: It is established that $Q$-homeomorphisms (in the sense of O. Martio) defined in $\mathbb{R}^n$, $n\geqslant2$, are absolutely continuous on lines. Furthermore, they belong to the Sobolev class $W_{\mathrm{loc}}^{1,1}$ and are differentiable almost everywhere for $Q\in L^{1}_{\mathrm{loc}}$.

UDC: 517.5

MSC: 31B15, 30C65, 30C75, 30E25, 46E35

Received: 14.06.2007
Revised: 04.12.2007

DOI: 10.4213/im2675


 English version:
Izvestiya: Mathematics, 2008, 72:5, 977–984

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026