RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2009 Volume 73, Issue 4, Pages 153–224 (Mi im2638)

This article is cited in 22 papers

Lagrangian embeddings of the Klein bottle and combinatorial properties of mapping class groups

V. V. Shevchishin

University of Bonn, Mathematical Institute

Abstract: In this paper we prove the non-existence of Lagrangian embeddings of the Klein bottle $K$ in $\mathbb{R}^4$ and $\mathbb{C}\mathbb{P}^2$. We exploit the existence of a special embedding of $K$ in a symplectic Lefschetz pencil $\operatorname{pr}\colon X \to S^2$ and study its monodromy. As the main technical tool, we develop the combinatorial theory of mapping class groups. The results obtained enable us to show that in the case when the class $[K]\in\mathsf{H}_2(X,\mathbb{Z}_2)$ is trivial, the monodromy of $\operatorname{pr}\colon X\to S^2$ must be of a special form. Finally, we show that such a monodromy cannot be realized in $\mathbb{C}\mathbb{P}^2$.

Keywords: symplectic geometry, Lagrangian submanifold, Lefschetz pencil, monodromy, mapping class group, Coxeter system, Artin–Brieskorn group.

UDC: 513.8+515.1

MSC: 57R17, 53D12, 20F36, 20F55

Received: 26.03.2007

DOI: 10.4213/im2638


 English version:
Izvestiya: Mathematics, 2009, 73:4, 797–859

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026