RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 1999 Volume 63, Issue 5, Pages 147–158 (Mi im262)

This article is cited in 2 papers

On the first case of Fermat's theorem for cyclotomic fields

V. A. Kolyvagin


Abstract: The classical criteria of Kummer, Mirimanov and Vandiver for the validity of the first case of Fermat's theorem for the field $\mathbb Q$ of rationals and prime exponent $l$ are generalized to the field $\mathbb Q(\root l\of 1)$ and exponent $l$. As a consequence, some simpler criteria are established. For example, the validity of the first case of Fermat's theorem is proved for the field $\mathbb Q(\root l\of 1)$ and exponent $l$ on condition that $l^2$ does not divide $2^l-2$.

MSC: 11D41, 11R18, 11R29

Received: 14.07.1998

DOI: 10.4213/im262


 English version:
Izvestiya: Mathematics, 1999, 63:5, 983–994

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026