RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1967 Volume 31, Issue 6, Pages 1311–1326 (Mi im2589)

This article is cited in 12 papers

The imbedding of certain classes of functions

V. A. Andrienko


Abstract: Necessary and sufficient conditions on the modulus of continuity $\omega(\delta)$ are found such that the inclusion $\psi(x)\in H_p^\omega$, $p\in[1,\infty)$ should imply $\psi(x)\sim\psi^*(x)\in H_p^\omega(L^\infty=C)$; sufficient conditions on $\omega(\delta)$ are also found such that $\psi(x)\in H_p^\omega$, $p\in[1,\infty)$, should imply $\psi(x)\in H_q^{\omega^*}$, $p<q<\infty$.

UDC: 517.5

MSC: 26A15

Received: 01.01.1967


 English version:
Mathematics of the USSR-Izvestiya, 1967, 1:6, 1255–1270

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026