RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1967 Volume 31, Issue 2, Pages 391–400 (Mi im2545)

This article is cited in 1 paper

The stability of solutions of certain operator equations with lagging arguments

Z. I. Rekhlitskii


Abstract: We consider the equation
\begin{gather*} y(t_1,\dots,t_n)-\sum_{q_1\dots q_n}A_{q_1\dots q_n}y(t_1-m^{(1)}_{q_1\dots q_n}a_1,\dots,t_n-m^{(n)}_{q_1\dots q_n}a_n)=f \\ (m^{(k)}_{q_1\dots q_n} \text{ -- are integers} \geqslant0;\ a_k>0;\ 0\leqslant t_1,\dots,t_n<\infty), \end{gather*}
where the $A_{q_1\dots q_n}=A_{q_1\dots q_n}(t_1,\dots,t_n)$ are continuous linear operator-functions operating in a complex Banach space. We establish necessary and sufficient tests for the boundedness of the solutions $y(t_1,\dots,t_n)$ of these equations for all bounded right-hand sides $f=f(t_1,\dots,t_n)$

UDC: 517.9

MSC: 47A50, 46E15, 41A58

Received: 04.07.1966


 English version:
Mathematics of the USSR-Izvestiya, 1967, 1:2, 381–390

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026