RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1968 Volume 32, Issue 5, Pages 1138–1146 (Mi im2509)

This article is cited in 49 papers

Some general questions in the theory of the Riemann boundary problem

I. B. Simonenko


Abstract: In this paper we investigate the Riemann boundary problem
$$ \Phi^+(t)=G(t)\Phi^-(t)+g(t) $$
for $n$ pairs of functions. The solutions $\Phi^\pm$ are to belong to the classes $E_p^\pm$; the given function g belongs to the class $L_p$ $(1<p<\infty)$. We enlarge the class of coefficients $G$ for which the Noether theory remains valid. In the case $n=1$, $p=2$, necessary and sufficient conditions for Noetherianness are obtained. It is shown that the class of matrix-functions which admit factorization coincides with the class for which the Noether theory is valid. In the case $n=1$ it is shown that one of the defect numbers is zero.

UDC: 517.9

MSC: 30F20, 30E25, 28B20, 46E30, 47A56, 26B35

Received: 03.01.1968


 English version:
Mathematics of the USSR-Izvestiya, 1968, 2:5, 1091–1099

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026