RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1968 Volume 32, Issue 3, Pages 621–632 (Mi im2480)

This article is cited in 5 papers

On the representation of arbitrary functions of two complex variables by double functional series of Dirichlet type

V. P. Gromov


Abstract: We investigate the question of representing a function $F(z,s)$ by a functional series of the form
\begin{equation} \sum^\infty_{n,k=1}a_{nk}A(z,s,\lambda_n,\mu_k), \tag{1} \end{equation}
where $A(z,s,\lambda,\mu)$ is a function of sufficiently general character. We establish a rule by which an arbitrary function $F(z,s)$ can be put into correspondence with a series of the form (1), and also establish a formula for the difference between $F(z,s)$ and a partial sum of the series (1).

UDC: 517.5

MSC: 30D10, 30C15, 11M41

Received: 26.06.1967


 English version:
Mathematics of the USSR-Izvestiya, 1968, 2:3, 573–584

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026