RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1970 Volume 34, Issue 2, Pages 366–375 (Mi im2420)

This article is cited in 10 papers

On the question of the structure of the subfield of invariants of a cyclic group of automorphisms of the field $\mathbf Q(x_1,\dots,x_n)$

V. E. Voskresenskii


Abstract: The subfield $L$ of the field $K=\mathbf Q(x_1,\dots,x_n)$ consisting of invariant functions relative to a cyclic permutation of the indeterminates is interpreted as the field of rational functions on a certain torus defined over $\mathbf Q$. On this basis, a necessary condition is derived for pure transcendence of $L$ over $\mathbf Q$ from which are obtained a number of counterexamples. A list is also given of fields $L$ which are purely transcendental over $\mathbf Q$.

UDC: 513.6

MSC: 20B35, 20B25, 26C15, 12F20

Received: 01.09.1969


 English version:
Mathematics of the USSR-Izvestiya, 1970, 4:2, 371–380

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026