RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1985 Volume 49, Issue 4, Pages 884–890 (Mi im2397)

This article is cited in 3 papers

Extension of locally holomorphic mappings into a product of complex manifolds

S. M. Ivashkovich


Abstract: It is proved that locally biholomorphic mappings from the punctured ball in $\mathbf C^n$ into a product of complex manifolds of positive dimension can be extended to the whole ball. In addition, it is proved that if complex manifolds $S_1$ and $S_2$ have the property that every locally biholomorphic map of the domain $D$ over $\mathbf C^n$ into $S_j$ can be holomorphically extended to the envelope of holomorphy $\widetilde D$ of $D$, then the product $S_1\times S_2$ possesses the same property.
Bibliography: 6 titles

UDC: 517.5

MSC: Primary 32D10; Secondary 32L05

Received: 02.10.1984


 English version:
Mathematics of the USSR-Izvestiya, 1986, 27:1, 193–199

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026