RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1985 Volume 49, Issue 4, Pages 675–704 (Mi im2387)

This article is cited in 5 papers

Power series and Peano curves

A. S. Belov


Abstract: A series $\sum_{n=1}^\infty c_ne^{inx}$ with coefficients $\{c_n\}$ tending monotonically (decreasing) to zero is constructed whose sum $f(x)$ has the following property: for any complex number
$$ w\in G=\biggl\{z:|z|\leqslant\frac32, \biggl|z-\frac32(-1+i)\biggr|\leqslant\frac{2.3}{\sqrt2}\biggr\} $$
the set $\{x\in(0,2\pi):f(x)=w\}$ has the cardinality of the continuum. Here the domain $G$ contains the segment $[-3/2,-1]$ on both the real and the imaginary axes. The construction is based on corresponding properties of lacunary trigonometric series, which are presented in detail.
Bibliography: 8 titles.

UDC: 517.5

MSC: Primary 30B10, 54FR2; Secondary 30D35, 42A32, 42A55

Received: 15.09.1983


 English version:
Mathematics of the USSR-Izvestiya, 1986, 27:1, 1–26

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026