RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1972 Volume 36, Issue 4, Pages 795–813 (Mi im2335)

This article is cited in 13 papers

A resonance theorem and series in eigenfunctions of the Laplacian

E. M. Nikishin


Abstract: By means of a resonance theorem we will establish the existence of functions in $L_p(\Omega)$ (where $\Omega$ is an $N$-dimensional region) whose expansion in eigenfunctions of the Laplacian is not Riesz-summable of order $a<N\bigl(\frac1p-\frac12\bigr)-\frac12$ if $1\leqslant p<\frac{2N}{N+1}$.

UDC: 517.5

MSC: Primary 35P10, 40G99; Secondary 42A60

Received: 07.12.1970


 English version:
Mathematics of the USSR-Izvestiya, 1972, 6:4, 788–806

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026