RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1973 Volume 37, Issue 4, Pages 917–930 (Mi im2325)

Smooth structures on Poincaré complexes

S. B. Shlosman


Abstract: The main theorem states that if the Spivak normal fibration associated to a Poincaré complex admits a vector bundle structure, then the Poincaré complex is homotopy equivalent to the union of two smooth manifolds with their boundaries identified via a homotopy equivalence. The theorem is applied to the question of existence of smooth structures on Poincaré complexes.

UDC: 513.8

MSC: Primary 57B10, 57D10; Secondary 57D65, 57D55, 57C10

Received: 29.06.1972


 English version:
Mathematics of the USSR-Izvestiya, 1973, 7:4, 919–932

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026